Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria.
نویسندگان
چکیده
The genetic code underlying protein synthesis is a canonical example of a degenerate biological system. Degeneracies in physical and biological systems can be lifted by external perturbations, thus allowing degenerate systems to exhibit a wide range of behaviors. Here we show that the degeneracy of the genetic code is lifted by environmental perturbations to regulate protein levels in living cells. By measuring protein synthesis rates from a synthetic reporter library in Escherichia coli, we find that environmental perturbations, such as reduction of cognate amino acid supply, lift the degeneracy of the genetic code by splitting codon families into a hierarchy of robust and sensitive synonymous codons. Rates of protein synthesis associated with robust codons are up to 100-fold higher than those associated with sensitive codons under these conditions. We find that the observed hierarchy between synonymous codons is not determined by usual rules associated with tRNA abundance and codon usage. Rather, competition among tRNA isoacceptors for aminoacylation underlies the robustness of protein synthesis. Remarkably, the hierarchy established using the synthetic library also explains the measured robustness of synthesis for endogenous proteins in E. coli. We further found that the same hierarchy is reflected in the fitness cost of synonymous mutations in amino acid biosynthesis genes and in the transcriptional control of σ-factor genes. Our study suggests that organisms can exploit degeneracy lifting as a general strategy to adapt protein synthesis to their environment.
منابع مشابه
Appendix: Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria
degeneracy of the genetic code to regulate protein levels in bacteria Arvind R. Subramaniam ∗, Tao Pan †, and Philippe Cluzel ∗ ∗FAS Center for Systems Biology, Department of Molecular and Cellular Biology, and School of Engineering and Applied Sciences, Harvard University, 52 Oxford St, Cambridge, MA 02138, USA, and †Department of Biochemistry and Molecular Biology, and Institute of Biophysica...
متن کاملIn silico Analysis and Molecular Modeling of RNA Polymerase, Sigma S (RpoS) Protein in Pseudomonas aeruginosa PAO1
Background: Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. The rpoS (RNA polymerase, sigma S) gene encodes sigma-38 (σ38, or RpoS), a 37.8 kDa protein in Pseudomonas aeruginosa (P. aeruginosa) strains. RpoS is a central regulator of the general stress response and operates in both retroa...
متن کاملNitrogen isotope variations and environmental perturbations during Cenomanian-Turonian transition in the NE Tethyan realm, Koppeh-Dagh basin
The Cenomanian-Turonian Gharesu section in the east of Kopet-Dagh basin have been investigated to determine the relationship between palaeoenvironmental perturbations and nitrogen cycling across OAE2. This succession is composed of 43 m shale and marl interbedded with glauconitic sandstone and lies between Aitamir-Abderaz formations boundary. The nitrogen Isotope values fluctuate between 0‰ to ...
متن کاملProduction of Xanthanases by Paenibacillus spp.: Complete Xanthan Degradation and Possible Applications
Background: A number of microorganisms and their enzymes have been reported as xanthan depolymerizers. Paenibacillus species are well-known polysaccharide hydrolyzing bacteria. However, Paenibacillus alginolyticus and Paenibacillus sp.XD are the only species in the genus which are now known to degrade xanthan.Objectives: Complete biodegradation of the xan...
متن کاملSynthetic Biology Based on Genetic Logic Circuit, Using the Expression of Drug Resistance, BCRP Pump in MCF-7 Cancer Cell Line
Biological circuits are developed as biological parts within a cell to carry out logical functions resembling those studied in electronics circuits. These circuits can be performed as a method to vary cellular functions, to develop cellular responses to environmental conditions, or to regulate cellular developments. This research explored the possibility of synthetic biology based on the geneti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 6 شماره
صفحات -
تاریخ انتشار 2013